Spatial uncertainty in multi-year mean phenology based on remote sensing data

نویسندگان

چکیده

å¤šå¹´å¹³å‡ç‰©å€™èƒ½å¤Ÿåæ˜ æ¤è¢«ç”Ÿé•¿å‘è‚²èŠ‚å¾‹çš„å‡è¡¡çŠ¶æ€ï¼Œæ˜¯æ¤è¢«ç‰©å€™æ¨¡æ‹Ÿä¸Žé¢„æµ‹çš„å ³é”®å‚æ•°ä¹‹ä¸€ã€‚é¥æ„Ÿå·²å¹¿æ³›ç”¨äºŽåœ°è¡¨ç‰©å€™ç›‘æµ‹ï¼Œæ˜¯ç©ºé—´å¤šå¹´å¹³å‡ç‰©å€™ä¿¡æ¯çš„é‡è¦æ¥æºã€‚ç„¶è€Œï¼ŒåŸºäºŽé¥æ„Ÿçš„å¤šå¹´å¹³å‡ç‰©å€™å­˜åœ¨ä¸åŒè®¡ç®—æ–¹æ³•ï¼Œå¦‚å ˆç¡®å®šæ¯å¹´æ—¶åºæ›²çº¿çš„ç‰©å€™ç‚¹å†æ±‚å¹³å‡å€¼ï¼ˆå¹³å‡æ³•ï¼‰ï¼Œä»¥åŠå ˆæ±‚å¤šå¹´å¹³å‡æ—¶åºæ›²çº¿å†ç¡®å®šç‰©å€™ç‚¹ï¼ˆå‚è€ƒæ›²çº¿æ³•ï¼‰ã€‚ä¸Šè¿°æ–¹æ³•çš„ç»“æžœå¯èƒ½å­˜åœ¨å·®å¼‚ï¼Œä½†ç›®å‰å°šç¼ºä¹å¯¹è¿™ä¸€ä¸ç¡®å®šæ€§åŠå ¶å½±å“çš„è®¤è¯†ã€‚é’ˆå¯¹è¯¥é—®é¢˜ï¼Œæœ¬ç ”ç©¶åˆ©ç”¨2001年—2016年遥感植被指数数据,分别在平均法和参考曲线法下提取中国森林生长季起始时间的多年平均值(SOS¯),比较SOS¯的差异(△SOSÂ¯ï¼‰åŠå ¶ç©ºé—´å¼‚è´¨æ€§ï¼›è¿›ä¸€æ­¥é€‰å–ç‰©å€™ç ”ç©¶ä¸­å¸¸ç”¨æŒ‡æ ‡ï¼Œå³ä»¥SOS¯为基础的温度“季前时长PD(Preseason Duration)”,分析SOSÂ¯ä¸åŒè®¡ç®—æ–¹æ³•å¯¹ç‰©å€™â€”æ°”å€™å ³ç³»çš„æ½œåœ¨å½±å“ã€‚ç»“æžœè¡¨æ˜Žï¼Œï¼ˆ1)不同方法下的SOS¯差异显著,总体上平均法小于参考曲线法(-2.6±2.2 dï¼Œå 88%ï¼‰ï¼Œå ¶ä¸­å­˜åœ¨8.0%和6.0%çš„æœ‰æ•ˆåƒå ƒå ¶åŠ¨æ€å¹³å‡æ³•å’Œå›ºå®šå¹³å‡æ³•å°äºŽå‚è€ƒæ›²çº¿æ³•è¶ è¿‡7 d,主要分布在东南丘陵地区。(2)△SOSÂ¯å ·æœ‰æ˜¾è‘—çš„ç©ºé—´å¼‚è´¨æ€§ï¼Œä¸»è¦è¡¨çŽ°ä¸ºéšå¹´å‡æ¸©çš„å‡é«˜è€Œå‡å°ï¼ˆSlope=0.07 d/℃,P<0.01ï¼‰ï¼Œéšå¹´å‡é™æ°´çš„å¢žåŠ è€Œå¢žå¤§ï¼ˆSlope=-0.0005 d/mm,P<0.01)。(3)不同方法下的PD存在差异,约40%æœ‰æ•ˆåƒå ƒçš„å·®å¼‚ï¼ˆâ–³PDï¼‰è¶ è¿‡5 dï¼ˆå ¶ä¸­è¿‘50%çš„åƒå ƒâ–³PDè¶ è¿‡15 dï¼‰ï¼Œä¸»è¦åˆ†å¸ƒåœ¨ä¸œå—ä¸˜é™µå’Œè¥¿å—å±±åŒºã€‚ç ”ç©¶ç»“æžœå°†ä¸ºé¥æ„Ÿåœ°è¡¨ç‰©å€™çš„æ¨¡åž‹ç©ºé—´å‚æ•°åŒ–åº”ç”¨æä¾›æœ‰ç›Šå‚è€ƒã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

identification of spatial variations of snow-covered days over iran based on remote sensing data

1. introduction glaciers and snow covers in the mountains play an important role in the water budget of many areas of the world (ramage and isacks, 2003). in high altitudes and mountainous regions, snowmelt is a great contributor to the yearly runoff. the snow melt supplies 1/6 of people's needed water but due to global warming these glaciers may be at risk (barnett, et al. 2005). for the regio...

متن کامل

Remote sensing data assimilation for a prognostic phenology model

[1] Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active Radiation absorbed by ve...

متن کامل

Air temperature estimation based on environmental parameters using remote sensing data

 This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the...

متن کامل

Investigation of periodic changes of the Oman Sea coastline using remote sensing data and spatial analysis

Extended abstract   1- Introduction Coastal environments are one of the most sensitive environmental systems under the influence of dominant hydrodynamic processes. Coastal changes and evolution are occurring very fast. Coastal areas are now gradually becoming known as severe natural and man-made disturbances, including sea levels rising, coastal erosion and sedimentation, and over-exploitat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20221043